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1. Introduction

Recently, the so called PT-symmetric quantum mechanics has attracted
wide attention [1]. In Bender and Boettcher’s work in 1998 [1], it was shown that
the class of non-Hermitian, Hamilton operators such as H = p2+x2(ix)ε(ε > 0)
has a real spectrum due to its PT-symmetry where P and T are the parity and
time reversal operators, respectively [2]. Exact solution of the Schrödinger equa-
tion for various potentials which are complex are generally of interest. It is also
known that PT-symmetry does not necessarily lead to completely real spectrum,
and an extensive kind of potentials of real or complex form are being faced with
in various fields of physics. In particular, the spectrum of the Hamiltonian is
real if PT-symmetry is not spontaneously broken. Recently, Mostafazadeh has
generalized PT symmetry by pseudo-Hermiticity [3]. In fact, a Hamiltonian of
this type is said to be η- pseudo Hermitian if H+ = ηHη−1, where + denotes
the operator of adjoint. In [4] new class of non-Hermitian Hamiltonians with
real spectra was proposed which are obtained using pseudo-symmetry. Moreover,
completeness and orthonormality conditions for eigenstates of such potentials
are proposed [5]. In the study of PT-invariant potentials various techniques from
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a great variety of quantum mechanical fields have been applied such as varia-
tional methods, numerical approaches, Fourier analysis, semi-classical estimates,
quantum field theory and Lie group theoretical approaches [5–14]. In addition,
PT-symmetric and non-PT symmetric and also non-Hermitian potential cases
such as oscillator type potentials [15], a variety of potentials within the frame-
work of SUSYQM [16–19], exponential type screened potentials [20], quasi/con-
ditionally exactly solvable ones [21], PT-symmetric and non-PT symmetric
and also non-Hermitian potential cases within the framework of SUSYQM
via Hamiltonian Hierarchy Method [22], and some others are studied [23–25].

The QHJ formalism, which is a formulation of quantum mechanics was
investigated as a theory related to the classical transformation theory [26, 27].
It was formulated by Leacock and Padgett [28, 29]. Within the Quantum
Hamiltonian Jacobi approach (QHJ), which follows classical mechanics, not only
the the energy spectrum of exactly solvable (ES) and quasi-exactly solvable
(QES) models in quantum mechanics but eigenfunctions can also be determined
[30–36]. The advantage of this method is that it is possible to determine the
energy eigenvalues without having to solve for the eigenfunctions. In this for-
malism, singularity structure of the quantum momentum function p(x) which
is a quantum analog of classical momentum function pc determines the eigen-
values of the Hamiltonian. An exact quantization condition is formulated as a
contour integral, representing the quantum action variable, in the complex plane.
The quantization condition leads to the number nodes of the wave function. The
wavefunction is related to the quantum momentum function (QMF). The equa-
tion satisfied by the QMF is a non-linear differential equation, called as quan-
tum Hamilton–Jacobi equation. There is a boundary condition in the limit QMF
which is used to determine physically acceptable solutions for the QMF [29–37].
In the applications, Ranjani and her collaborators applied the QHJ formalism,
to Hamiltonians with Khare–Mandal potential and Scarf potential, character-
ized by discrete parity and time reversal (PT) symmetries [31].

The purpose of the present work has been to apply the QHJ formalism to
the Hamiltonian in one dimension with non-hermitian exponential type poten-
tials in order to see possible singularities for the QMF which determine eigen-
values and convenient eigenfunctions.

The organization of the paper is as follows. In section 2, we briefly intro-
duce the Quantum Hamilton–Jacobi formalism. In sections 3 and 4, solutions
of PT-/non-PT-symmetric and non-Hermitian forms of the well-known potentials
are presented by using QHJ method. We discuss the results in section 5.

2. Quantum Hamilton–Jacobi formalism

In quantum theory, one assumes that function W(x,E) satisfies
(2m = 1) [33],
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−i�∂
2W(x,E)

∂x2
+

[
∂W(x,E)

∂x

]2

= (E − V (x)). (1)

Equation (1) will be called as the QHJ equation. The momentum function

p(x,E) = ∂W(x,E)

∂x
(2)

will be called as the QMF. In the limit � → 0, the QHJ equation turns into the
classical Hamilton–Jacobi equation. Then, QMF turns into the classical momen-
tum function in the � → 0 limit:

p(x,E) → pc(x, E) = √
E − V (x). (3)

In terms of p(x,E) the QHJ equation, equation (1) can be written as

p2(x, E)− i�p′(x, E)− [E − V (x)] = 0. (4)

Leacock and Padgett [28, 29] proposed using the following quantization condi-
tion for the bound states in order to obtain eigenvalues. C is a contour that
encloses the moving poles between the classical turning points and the integral

J (E) = 1
2π

∮
C

p(x) dx (5)

is called the quantum action variable. More details can be found in the paper of
Refs. 30–37. Then

J = n� = J (E) (6)

gives the exact energy eigenvalues (n= 0, 1, 2, ...) [28–33]. Leacock and
Padgett [28, 29] defines the wave function in order to connect QHJ equation to
the Schödinger equation,

ψ(x,E) ≡ exp
[
i

�
W(x,E)

]
(7)

hence ψ(x,E) satisfies the Schödinger equation and the physical boundary con-
ditions. The quantization condition becomes [33]∮

C

p(x,E)dx = 2πi
∑
k

(Res)k = nh, (8)

where
∑
k(Res)k is sum of the residues. In the QHJ equation, if V (x) has a sin-

gular point, p(x,E) will also have singular point in that zone [33]. These singu-
larities are known as fixed singular points which are energy independent. Other
types of singular points are the moving singular points. They can only be poles
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with residue −i�. Suppose b �= 0 then, moving singularities are in the form of
[30–37]

p(x,E) ∼ b

(x − x0)
r

+ · · · (9)

in the QHJ equation. If the potential is not singular at x = x0 then r must be
equal to one and b = −i� [33].

3. Generalized Morse potential

The generalized Morse potential is given by Yesiltas et al. [19]

V (x) = V1e−2αx − V2e−αx. (10)

In order to apply QHJ method, we write the potential relation in equation (4)
(� = 2m = 1)

p2 − ip′ − [E − V1e−2αx + V2e−αx] = 0. (11)

Substitution of the transformation of y = √
V1e−αx in equation (11) gives:

p2(y, E)+ iαyp′(y, E)−
[
E − y2 + V2√

V1
y

]
= 0. (12)

Define p = iαyφ and χ = φ + 1
2y in order to transform equation (11) into a

Riccati type differential equation as,

χ ′ + χ2 + 1
4y2

+ 1
α2y2

[
E − y2 + V2√

V1
y

]
= 0. (13)

As it can be seen from equation (13), χ has a pole only at y = 0 and for y = 0
define χ as,

χ = b1

y
+ a0 + a1y. (14)

Substitute equation (14) in (13) and equate coefficients of 1
y2 yields

b1 = 1
2α
(α ± 2

√−E). (15)

When it comes to the discussion of the behaviour of χ at infinity, one expands
χ as:

χ = a0 + λ

y
+ λ1

y2
(16)
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and find λ as

λ = ± V2

2α
√
V1
. (17)

One can see that the behaviour of χ is b1+n
y

for large y. Hence,

b1 + n = λ. (18)

In order to find the wavefunction, χ(y) can be written as the sum of the Laurent
expansions around different singular points, plus a constant C1. Hence

χ(y) = b1

y
+ P ′

n(y)

Pn(y)
+ C1, (19)

where Pn(y) is a n th degree polynomial. Substitute equation (19) in (13) and get

P ′′
n

Pn
+ 2P ′

n

Pn

(
2b1

y
+ 2C1

)

+
(
b2

1 − b1 + E/α2 + 1/4

y2
+ 2b1C1

y
+ C2

1 − 1
α2

+ V2

α2y
√
V1

)
= 0. (20)

For large y one can find C1 = ± 1
α

. The wave function in terms of χ can be writ-
ten by using equation (19) and (7) as

ψ(y) = exp
(∫ (

b1

y
+ P ′

n

Pn
− 1
α

− 1
2y

)
dy

)
. (21)

In equation (21) the correct value of C1 is used as C1 = − 1
α

because of the con-
dition for the wavefunction which is known as y → ∞, ψ(y) → 0. It is seen from
equation (15) that b1 has two values and no particular value has been chosen.
Using equation (18), the energy eigenvalues for any nth state become,

En = −α
2

4

[
(2n+ 1)− V2

α
√
V1

]2

. (22)

If we use equations (22) and (15) and C1 = −1/α in equation (20), it becomes

yP ′′
n (y)+

(
V2

2α
√
V1

+ 1 − y

)
P ′
n(y)+ nPn(y) = 0, (23)

which is a Laguerre differential equation. Therefore, the wavefunction is obtained
as

ψn(y) = Cn e− y
α y

(
−n± V2

2α
√
V1

)
L

V2
2α

√
V1

n (y), (24)

where Cn is a normalization constant and L

V2
2α

√
V1

n (y) are Laguerre functions. The
wavefunction satisfies the boundary condition that is y → ∞, ψ(y) → 0.
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3.1. Non-PT symmetric and non-Hermitian Morse potential

In equation (10), if the potential parameters are defined as V1 = (A +
iB)2, V2 = (2C + 1)(A+ iB), and α = 1, then the potential becomes [19],

V (x) = (A+ iB)2e−2x − (2C + 1)(A+ iB)e−x, (25)

where A, B, and C are arbitrary real parameters and i = √−1. The QHJ equa-
tion is

p2 − ip′ − [E − (A+ iB)2e−2x + (2C + 1)(A+ iB)e−x] = 0. (26)

Using the transformation in the form of y = (A + iB)e−x in the equation (26),
then using p(y) = iyφ and χ = φ + 1

2y , equation (26) becomes

χ ′ + χ2 + 1
4y2

+ 1
y2

[
E − y2 + (2C + 1)y

]
= 0. (27)

As it is seen from equation (27), χ has a pole only at y = 0 and for y = 0 define
χ for the equation (27) as,

χ = b1

y
+ a0 + a1y. (28)

Using the equation (28) in (27), b1 is found as

b1 = 1
2

± i

√ |4E|
2
. (29)

Following the same procedure that is given in section 3, energy is found as

En = −(n− C)2. (30)

Now choose the potential parameters in equation (10) as V1 is real and V2 =
A+ iB, the Morse potential can be written in the following form

V (x) = V1e−2iαx − (A+ iB)e−iαx (31)

and following the same procedure, the energy is obtained as

En = α2
[
(n+ 1/2)− A+ iB

2α
√| − V1|

]2

. (32)

According to equation (32), the spectrum is real in the case of Im(V2) = 0.
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3.2. PT symmetric and non-Hermitian Morse potential

When α = iα and V1, V2 are real, the Morse potential becomes

V (x) = V1e−2iαx − V2e−iαx. (33)

Thus, the energy eigenvalues are obtained as

En = α2
[(
n+ 1

2

)
+ V2

2α
√| − V1|

]2

. (34)

If we take the parameters of equation (39) as V1 = −ω2, V2 = D, and α = 2
then, corresponding eigenvalues for any nth state are obtained as

En =
(

2n+ 1 + D

2ω

)2

(35)

are consistent with the results [10, 11, 19].

4. Pöschl-Teller potential

The general form of the Pöschl-Teller potential is

V (x) = −4V0
e−2αx

(1 + qe−2αx)2
. (36)

The QHJ equation is given as

p2 − ip′ −
(
E + 4V0

e−2αx

(1 + qe−2αx)2

)
= 0. (37)

If we take y = ±i√qe−αx and use the transformations as p = −iαyφ and χ =
φ + 1

2y , the QHJ equation turns into

χ ′ + χ2 + 1
4y2

+ 1
α2y2

[
E − 4V0

q

y2

(1 − y2)2

]
= 0. (38)

As it is seen from equation (38), χ has poles at y = 0 and ±1. χ is expanded at
y = 0 and b1 is found

b1 = 1
2α
(α ± 2

√−E). (39)

At y = 1, one can expand χ as

χ = b′
1

1 − y
+ a′

0 + a′
1(1 − y) (40)
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and b′
1 is found as

b′
1 = 1

2qα
(qα ±

√
α2q2 + 8qV0). (41)

At y = −1, one can expand χ as

χ = b′′
1

1 + y
+ a′′

0 + a′′
1 (1 + y). (42)

Substitute equation (42) in (38), to obtain b′
1 = b′′

1. One can look at the behavior
of χ at infinity with expanding χ as

χ = A0 + λ

y
+ λ

y2
. (43)

From equation (43) and (38), λ is found as

λ = 1
2α
(α ± 2

√−E) (44)

and behavior of χ is
b1+b′

1+b′′
1+2n

y
for large y. Hence,

λ = b1 + b′
1 + b′′

1 + 2n. (45)

In order to find the wavefunctions, χ is written as

χ = b1

y
+ b′

1

1 − y
+ b′′

1

1 + y
+ P ′

n(y)

Pn(y)
+ C2. (46)

Substituting equation (46) in (38), C2 can be found as C2 = 0 for large y. The
wavefunction can be written as

ψ = exp

(∫ (
2b1 − 1

2y
+ b′

1

1 − y
+ b′′

1

1 + y
+ P ′

n(y)

Pn(y)

)
dy

)
. (47)

If we look at equation (47), b1 and b′
1 have two values and both of them gives

appropriate results for energy spectrum and wavefunction, no particular value
has been chosen. Thus, residues are given as b1 = 1

2α (α± 2
√−E) and b′

1 = b′′
1 =

1
2qα (qα ± √

α2q2 + 8qV0). Finally the energy is obtained by using equation (45)
as

En = −α
2

4

(
−(2n+ 1)+

√
1 + 8V0

qα2

)2

. (48)

Using equations (47), (48), and (38), one can find the wave function as

ψn(y) = N y−(n−1/2)±γ (1 − y2)
1
2 (1±γ ) P−ν2− 1

2 , ν2− 1
2

n (y), (49)
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where N is a normalization constant, γ =
√

1 + 8V0
qα2 , P

−ν2− 1
2 ,ν2− 1

2
n (y) stands for

Jacobi polynomials and ν2 =
√

8V0
qα2 . If we look at equation (49), there are three

cases for physical solutions because of the wavefunction that satisfies the bound-
ary condition as y → ∞, ψ(y) → 0. If −(n − 1/2) ± γ < 0 and 1 ± γ > 0, it
should be 1 ± γ > | − (n− 1/2)± γ |. If −(n− 1/2)± γ < 0 and 1 ± γ < 0, there
is no restriction for the parameters and there are physical solutions in this case.
The last case can be defined as; if −(n− 1/2)± γ > 0, 1 ± γ > | − (n− 1/2)± γ |
for appropriate solutions.

4.1. Non-PT symmetric and non-Hermitian Pöschl-Teller cases

Here, V0 and q are complex parameters V0 = V0R + iV0I and q = qR + iqI
but α is a real parameter. Although the potential is complex and the correspond-
ing Hamiltonian is non-Hermitian and also non-PT symmetric, there may be real
spectra if and only if V0I qR = V0RqI . When both parameters V0 and q are taken
pure imaginary, the potential turns out to be,

V (x) = −4V0
2qe−4αx + i(1 − q2e−4αx)

(1 + q2e−4αx)2
. (50)

For simplicity, we use the notation V0 and q instead of V0I and qI . In this case,
we get the same energy eigenvalues as in equation (48). If q is an arbitrary real
parameter and V0 ⇒ iV0 also α ⇒ iα completely imaginary, the potential
becomes

V (x) = −4V0
(1 − q2) sin 2αx + i(2q + (1 + q2) cos 2αx)
(1 + q2)2 + 4q cos 2αx(1 + q cos 2αx + q2)

(51)

and the corresponding energy eigenvalues become

E = α2

4

[
2n+ 1 +

√
1 + 8V0

α2

]2

. (52)

For simplicity, let us take all three parameters α, q, V0 purely imaginary. Then
the potential takes the form

V (x) = −4V0
(1 + q2) sin 2αx + 2q + i((1 − q2) cos 2αx)

(1 + q2)2 + 4q2(1 − cos2 2αx)+ 4q(1 + q2) sin 2αx
(53)

and the energy becomes

En = α2

4

[
2n+ 1 + 1

2αq

√
α2q2 + (1 + q2)V0

]2

. (54)
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4.2. PT symmetric and non-Hermitian Pöschl-Teller cases

We choose parameters V0 and q real and also α = iα. Then, the potential
turns into

V (x) = −4V0
(1 + q2) cos 2αx + 2q + i(q2 − 1) sin 2αx
(1 + q2)2 + 4q cos 2αx(1 + q cos 2αx + q2)

(55)

and corresponding energy spectrum is

E = −α
2

4

[
2n+ 1 +

√
1 + 8V0

α2

]2

. (56)

5. Conclusions

We have applied the PT-symmetric formulation to solve the Quantum
Hamilton–Jacobi equation for Morse and Pöschl-Teller potentials in both real
and complex forms. We have obtained the energy eigenvalues and the corre-
sponding wave functions for different forms of these potentials within Quantum
Hamilton–Jacobi formalism. The real energy spectra of the PT-/non-PT-symmet-
ric complex valued non-Hermitian potentials have been obtained in case the
potential parameters are restricted. It is also shown that the QHJ formalism is
a good approach to obtain eigenfunctions and energy eigenvalues for a class
of exponential type potentials discussed here within PT symmetric frame. As a
result, we have pointed out that our exact results of complexified general Morse
and Pöschl-Teller potentials may increase the number of applications of complex
Hamiltonians with real energies in the extensive study of different quantum sys-
tems within the flexible Quantum Hamilton–Jacobi approach. Finally we should
state that this work is the first application on the study of PT-symmetry for the
Quantum Hamilton–Jacobi approach.
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